Symplectic Geometry of Integrable Hamiltonian Systems
49,00 €*
Sofort verfügbar, Lieferzeit: 1-3 Tage
Produktnummer:
9783764321673
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
Autor: | Audin, Michèle Cannas da Silva, Ana Lerman, Eugene |
---|---|
EAN: | 9783764321673 |
Sprache: | Englisch |
Seitenzahl: | 226 |
Produktart: | kartoniert, broschiert |
Verlag: | Birkhäuser Birkhäuser Basel Springer, Basel |
Schlagworte: | Differentialgeometrie / Differenzialgeometrie |
Größe: | 14 × 183 |
Gewicht: | 441 g |