Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen

Symplectic Geometry of Integrable Hamiltonian Systems

Michèle Audin, Eugene Lerman, Ana Cannas Da Silva
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
Autor: Audin, Michèle Lerman, Eugene Cannas Da Silva, Ana
EAN: 9783764321673
Sprache: Englisch
Seitenzahl: 240
Produktart: kartoniert, broschiert
Verlag: Birkhäuser Basel Springer Basel AG
Veröffentlichungsdatum: 24.04.2003
Schlagworte: Differenzialgeometrie Geometrie / Differenzialgeometrie
Größe: 14 × 170 × 244
Gewicht: 422 g